GradedInterventionTimeSeries.plot_effect#
- GradedInterventionTimeSeries.plot_effect(effect_result, **kwargs)[source]#
Plot counterfactual effect analysis results.
Creates a 2-panel figure showing: 1. Observed vs counterfactual outcome 2. Cumulative effect over time
- Parameters:
effect_result (dict) – Result dictionary from effect() method containing: - effect_df: DataFrame with observed, counterfactual, effect columns - window_start, window_end: Effect window boundaries - channels: List of scaled channels - scale: Scaling factor used - total_effect: Total effect in window - mean_effect: Mean effect per period in window
- Returns:
fig (matplotlib.figure.Figure)
ax (array of matplotlib.axes.Axes) – Array of 2 axes objects (top: observed vs counterfactual, bottom: cumulative effect).
- Return type:
Examples
# Estimate effect of removing treatment effect_result = result.effect( window=(df.index[0], df.index[-1]), channels=["comm_intensity"], scale=0.0, ) fig, ax = result.plot_effect(effect_result)