InterruptedTimeSeries#
- class causalpy.experiments.interrupted_time_series.InterruptedTimeSeries[source]#
The class for interrupted time series analysis.
- Parameters:
Example
>>> import causalpy as cp >>> df = ( ... cp.load_data("its") ... .assign(date=lambda x: pd.to_datetime(x["date"])) ... .set_index("date") ... ) >>> treatment_time = pd.to_datetime("2017-01-01") >>> seed = 42 >>> result = cp.InterruptedTimeSeries( ... df, ... treatment_time, ... formula="y ~ 1 + t + C(month)", ... model=cp.pymc_models.LinearRegression( ... sample_kwargs={ ... "target_accept": 0.95, ... "random_seed": seed, ... "progressbar": False, ... } ... ), ... )
Notes
For Bayesian models, the causal impact is calculated using the posterior expectation (
mu) rather than the posterior predictive (y_hat). This means the impact and its uncertainty represent the systematic causal effect, excluding observation-level noise. The uncertainty bands in the plots reflect parameter uncertainty and counterfactual prediction uncertainty, but not individual observation variability.Methods
InterruptedTimeSeries.__init__(data, ...[, ...])InterruptedTimeSeries.get_plot_data(*args, ...)Recover the data of an experiment along with the prediction and causal impact information.
Recover the data of the experiment along with the prediction and causal impact information.
Recover the data of the experiment along with the prediction and causal impact information.
InterruptedTimeSeries.input_validation(data, ...)Validate the input data and model formula for correctness
InterruptedTimeSeries.plot(*args, **kwargs)Plot the model.
Ask the model to print its coefficients.
InterruptedTimeSeries.summary([round_to])Print summary of main results and model coefficients.
Attributes
expt_typeidataReturn the InferenceData object of the model.
supports_bayessupports_ols- classmethod __new__(*args, **kwargs)#